MATH 4242 Quiz 8

Name:_____ Student Id:_____

Find a Jordan basis for $A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$ and write down the Jordan decomposition.

Proof. The characteristic polynomial is $(x-1)^3$. So it has only 1 eigenvalue.

 $\ker(A-I) = \ker\begin{pmatrix} 0 & 2 & 3\\ 0 & 0 & 2\\ 0 & 0 & 0 \end{pmatrix} = \{(x,0,0) | x \in \mathbb{R}\}.$ So (1,0,0) is an eigenvector, and let $w_1 = (1,0,0).$ Next we find w_2 : $\begin{pmatrix} 0 & 2 & 3 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} (x, y, z)^t = (1, 0, 0)^t \implies y = \frac{1}{2}, \ z = 0.$ Thus we can let $w_2 = (0, 1/2, 0).$ Next we find w_3 : $\begin{pmatrix} 0 & 2 & 3 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} (x, y, z)^t = (0, 1/2, 0)^t \implies y = -\frac{3}{8}, \ z = \frac{1}{4}.$ Thus we can let $w_2 = (0, -3/8, 1/4).$ $A = K \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} K^{-1} \text{ where } K = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 & -3/8 \\ 0 & 0 & 1/4 \end{pmatrix}$

н		1
н		1
		1