MATH 4242 Quiz 6

Name:_____ Student Id:_____

Let $A = \begin{pmatrix} 5 & -3 \\ 6 & -4 \end{pmatrix}$. Is A diagonalizable? If so, find K and D such that $A = K^{-1}DK$ where D is a diagonal matrix.

Proof. The characteristic polynomial is $x^2 - x - 2 = (x + 1)(x - 2)$. So there are two distinct eigenvalues, thus the matrix is diagonalizable.

Next we find the eigenvectors.

For
$$\lambda = 2$$
:
 $\ker(A - 2I) = \ker\begin{pmatrix}3 & -3\\6 & -6\end{pmatrix} = \ker\begin{pmatrix}3 & -3\\0 & 0\end{pmatrix} = \{(x, x) : x \in \mathbb{R}\} = \operatorname{span}(1, 1).$
For $\lambda = -1$:
 $\ker(A - (-1)I) = \ker\begin{pmatrix}6 & -3\\6 & -3\end{pmatrix} = \ker\begin{pmatrix}6 & -3\\0 & 0\end{pmatrix} = \{(x, 2x) | x \in \mathbb{R}\} = \operatorname{span}(1, 2).$
So $A = \begin{pmatrix}1 & 1\\2 & 1\end{pmatrix}\begin{pmatrix}2 & 0\\0 & -1\end{pmatrix}\begin{pmatrix}-1 & 1\\2 & -1\end{pmatrix}$