MATH 4242 Quiz 2

Name:_____ Student Id:_____

(1) Prove or provide a counterexample. Does $\{(1,1), (2,5)\}$ form a basis of \mathbb{R}^2 ? (3 pts)

Proof. Yes. First we show that (1,1) and (2,5) is linearly independent, i.e. the only way to write (0,0) as a linearly combination of them is using 0 coefficient. This is equivalent to solving the system of equations.

 $\begin{aligned} x + y &= 0\\ 2x + 5y &= 0 \end{aligned}$

Using Gaussian elimination, we found only one solution which is x = y = 0. Therefore they are linearly independent.

We know that dim $\mathbb{R}^2 = 2$, and linearly independent list of vectors of the correct size for a basis, so (1,1), (2,5) form a basis of \mathbb{R}^2 .

(2) Are the vectors $(1,3), (0,-1), (1,1) \in \mathbb{R}^2$ linearly independent? Explain your answer. (3 pts)

Proof. No. \mathbb{R}^2 has dimension two, so every basis of \mathbb{R}^2 has size two. But we know that if the three vectors were linearly independent, then they extend to a basis of \mathbb{R}^2 of at least three vectors¹, which is a contradiction.

(3) What's the dimension of $V = \{(x, y, z) | x + y + z = 0\}$, as a subspace of \mathbb{R}^3 ? (4 pts)

Proof. V an be re-written as

$$V = \{(x, y, -x - y) | x, y \in \mathbb{R}\}$$

Every vector in V of the form (a, b, -a - b) can be uniquely written as a(1, 0, -1) + b(0, 1, -1). Therefore $V = \text{span}\{(1, 0, -1), (0, 1, -1)\}$. These two vectors are linearly independent, so they form a basis of V. Thus dim V = 2.

¹Using the lemma that linearly independent list of vectors extends to a basis.