Name:_____ Student Id:_____

Let $V = \mathbb{R}^2$ the real vector space, and define

$$U = \{(x, y) | y = x\}$$
$$W = \{(x, y) | y = -x\}$$

- (1) Prove that both U and W are subspaces of V. (4 pts)
 - *Proof.* Let u_1, u_2 be arbitrary vectors in U, then $u_1 = (a, a)$ and $u_2 = (b, b)$ for some $a, b \in \mathbb{R}$. Then $u_1 + u_2 = (a + b, a + b)$ satisfies the defining equation of U, thus is also a vector in U.
 - For any $c \in \mathbb{R}$, $cu_1 = (ca, ca) \in \mathbb{R}$. Therefore U is closed under addition and scalar multiplication, thus is a subspace. Proof for W is similar.
- (2) Describe their sum U + W. Is it a direct sum? (Provide a counterexample or a proof.) (6 pts)

Proof.

$$U + W = \{(a, a) + (b, -b) | a, b \in \mathbb{R}\} = \{(a + b, a - b) | a, b \in \mathbb{R}\}\$$

We will show that this equals to \mathbb{R}^2 . For any arbitrary vector $(c, d) \in \mathbb{R}^2$, we want to show that it can be written in the form (a + b, a - b). This is equivalent to solving the equations

$$a+b=c$$

$$a - b = d$$

The only solution is $a = \frac{c+d}{2}, b = \frac{c-d}{2}$. Therefore every $(c, d) \in \mathbb{R}^2$ is an element in U + W. Since U + W is a subspace of \mathbb{R}^2 . Therefore $U + W = \mathbb{R}^2$.

Furthermore, because of the uniques of the above solution. Every (c, d) can be uniquely written as

$$(c,d) = \left(\frac{c+a}{2}, \frac{c+a}{2}\right) + \left(\frac{c-a}{2}, -\frac{c-a}{2}\right)$$

where $\left(\frac{c+d}{2}, \frac{c+d}{2}\right) \in U$ and $\left(\frac{c-d}{2}, -\frac{c-d}{2}\right) \in W$. Thus $U + W = U \oplus W$ is a direct sum.