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1. Systems of Linear Equations

A m× n system of linear equation is of the form

a11x1 + · · ·+ an1xn = b1

a21x1 + · · ·+ an2xn = bn

· · · · · · · · ·
am1x1 + · · ·+ amnxn = bn

Such equation can be represented using product of matrices.




a11 a21 · · · am1

a21 a22 · · · am2

· · · · · · · · · · · ·
am1 am2 · · · amn









x1

x2
...
xn



 =





b1
b2
...
bn





or by an augmented matrix.
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a11 a21 · · · am1 b1
a21 a22 · · · am2 b2
· · · · · · · · · · · ·
am1 am2 · · · amn bn





Definition 1.1. We have three types of elementary row operations.

(1) Multiply the i-th equation (or the i-th row of the augmented matrix), then add it to
the j-th equation (or the j-th row of the augmented matrix).

(2) Permute the equations (or the rows of the augmented matrix)
(3) Multiply one equation (or one row of the augmented matrix) by a non-zero number.

1.1. Systems of n× n Equations. Matrices considered in this sections are all n× n.

Definition 1.2. A matrix is regular if it can be turned into a upper triangular matrix such
that every entry on the diagonal is non-zero.

Proposition 1.3. Let E be the matrix with 1’s on the diagonal and Eij = k ∕= 0 is the only
other non-zero entry in the lower triangular part. Then for any matrix M , EM is the matrix
obtained by multiplying the j-th row of M then adding to the i-th row of M .

Proposition 1.4. A matrix A is regular if and only if it has an LU factorization, i.e.

A = LU

where L is a lower uni-triangular matrix, and U is a upper triangular matrix with non-zero
diagonal entries.

Definition 1.5. Let w ∈ Sn be a permutation, then define Pw = {aij} to be the matrix such
that

ai,j =


1 j = w(i)

0 otherwise.

Proposition 1.6. For any matrix M , PwM is the matrix obtained by permuting the rows
of M according to the permutation w.

Definition 1.7. A matrix A is called non-singular if it can be turned into a upper triangular
matrix without non-zero diagonal entry via row operations of the first two types.

Proposition 1.8. A matrix A is non-singular if and only if it has a permuted LU factor-
ization: PA = LU where P is some permutation matrix.

Definition 1.9. Let A = (aij), defined transpose of A to be At := (aji).

Proposition 1.10. Denote At the transpose of A. We have that AB = (BA)t.

Proposition 1.11. A matrix A is regular iff it admits an LDV factorization, A = LDU
where L is lower-unitriangular matrix, D is a diagonal matrix, and U is a uni-upper trian-
gular matrix.

Definition 1.12. Let A be an n×n matrix. Suppose X is a matrix such that XA = AX = I
where I is the identity matrix. Then X is called the inverse of A and denoted by A−1. A
matrix is called invertible if A−1 exists.

Proposition 1.13. A matrix is invertible if and only if it is non-singular.

Remark 1.14. Inverse of a matrix can be found using Gauss-Jordan Elimination — see
chapter 1 of Olver-Shakiban.
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1.2. Systems of m× n Equations.

Definition 1.15. A matrix is in row echelon form if it looks like,




• ∗ ∗ ∗ ∗ ∗
0 • ∗ ∗ ∗ ∗
0 0 0 • ∗ ∗
0 0 0 0 0 0





where •’s are non-zero entries (called pivots) and ∗ represent generic entries. The pivots are
the first non-zero entries in each rows. We require the pivots occupy the first several rows
consecutively.

Proposition 1.16. Every matrix can be turned into a row echelon form using elementary row
operations of type I and II. In other words, every matrix A has a factorization PA = LU
where P is a permutation matrix, L is a lower uni-triangular matrix, and U a matrix in
row-echelon form.

Definition 1.17. Since every matrix can be turned in to row-echelon form using elementary
row operations, we define its rank to be the number of pivots.

Proposition 1.18. A square n× n matrix is non-singular if its rank is n (full-rank).

2. Vector Spaces

2.1. Some Basic Setup.

Definition 2.1. 1 A field is a set F with two binary operations × (multiplication) and +
(addition), satisfying the following axioms.

• a+ b = b+ a and a× b = b× a for all a, b ∈ F.
• There exists an additive identity 0 such that 0 + a = a+ 0 = a for all a ∈ F.
• There exists a multiplication identity 1 such that 1× a = a× 1 = a for all a ∈ F.
• For every a ∈ F, there exists an element denoted −a, such that a+ (−a) = 0.
• 0 ∕= 1.
• For every a ∈ F and a ∕= 0, there exists an element denoted a−1, such that a×(a−1) =
1.

• For every a, b, c ∈ F, a× (b+ c) = ab+ ac.

For most part of this class, we will take F = R or F = C = {a+ bi|a, b ∈ R and i2 = −1}.

Definition 2.2. For a field F, denote F[x] the ring2of polynomials over F.

F[x] = {a0 + a1x+ a2x
2 + · · · anxn|a0, · · · , an ∈ F, n  0, xmxn = xm+n}

Proposition 2.3. Every polynomial a0+a1x+a2x
2+ · · ·+anx

n = 0 with complex coefficient
has at least one complex solution. Note that this is not true for real polynomials.

Definition 2.4. A field F is called algebraically closed if every polynomial in F[x] has a solution
in F. (By Proposition 2.3, C is algebraically closed).

1You don’t need to worry too much about the abstract structures of a field. The purpose of this definition
is to make everything self-contained. You can basically think of a field as a set on which you can do some
sort of arithmetic.

2A ring is a field, where multiplication need not to be commutative, and multiplicative identity (0) need
not exists.
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Proposition 2.5. The field of complex numbers C is the algebraic closure of R. In other
words, C is the smallest algebraically closed field that contains R.

2.2. Vector Spaces and Subspaces. Let F be a field.

Definition 2.6. A set V is called a vector space over F if there exists an addition map

add : V × V  V,

a scalar multiplication map
mult : F × V  V,

and a zero vector 0 such that v + 0 = v for all v ∈ V and λ0 = 0 for all λ ∈ F. (Here ×
denote the Cartesian product of sets3.) We will abbreviate them by a(v1, v2) = v1 + v2 and
mult(a, v) = av.

Note that this definition (implicitly) requires that a vector space V is closed under addition
and scalar multiplication, i.e. v1 + v2 = add(v1, v2) ∈ V and av = mult(a, v) ∈ V .

Elements of a vector spaces are called vectors.

Definition 2.7. Let V be a vector space over F. A subset U of V is a subspace if it is closed
under addition and scalar multiplication, and contains the zero vector. (In other words, a
subspace is a subset that is a vector space itself.)

Definition 2.8. Let U1, · · · , Um be subspaces of V . Then define their sum to be

U1 + · · ·+ Um = {u1 + · · ·+ um|u1 ∈ U1, · · · , um ∈ Um}

Proposition 2.9. Let U1, · · · , Um be subspaces of V . Then U1 + · · ·+Um is also a subspace
of V , furthermore, it’s the smallest subspace of V that contain all of U1, · · · , Um.

Definition 2.10. A sum of subspaces U1 + · · · + Um of V is a direct sum if every vector
v ∈ U1 + · · · + Um can be uniquely written as v = u1 + · · · + um where ui ∈ Ui for each i.
When a summation is direct, we denote it as U1 ⊕ · · ·⊕ Um.

2.3. Linear Combination, Span, and Dimension. Let V be a vector space over F.

Definition 2.11. Let v1, v2, · · · , vn ∈ V , a vector v ∈ V is a linear combination of {v1, · · · , vn}
if there exists a1, · · · , an ∈ F such that

v = a1v1 + · · ·+ anvn

Definition 2.12. Let v1, v2, · · · , vn be a list of vectors in V , define their span to be the set of
all linear combinations of v1, · · · , vn.

span(v1, · · · , vn) = {a1v1 + · · ·+ anvn|a1, · · · , an ∈ F}

Proposition 2.13. For a list of vectors v1, · · · , vn ∈ V , span(v1, · · · , vn) is a subspace of
V . Furthermore, it’s the smallest subspace containing all of v1, · · · , vn.

Definition 2.14. A vector space V is said to be finite dimensional it it is the span of a finitely
many vectors.

Definition 2.15. v1, · · · , vm ∈ V are linearly independent if the only way to write 0 as a linear
combination of v1, · · · , vn is

0 = 0v1 + 0v2 + · · ·+ 0vn.

3For sets A and B, defined A×B = {(a, b)|a ∈ A, b ∈ B}



MATH 4242 APPLIED LINEAR ALGEBRA 5

Proposition 2.16. v1, · · · , vm ∈ V are linearly independent if and only if any vector v ∈
span(v1, · · · , vm) can be uniquely written as a linear combination of v1, · · · , vn.

Definition 2.17. A list of vectors v1, · · · , vn is a basis of V if

• V = span(v1, · · · , vn)
• v1, · · · , vn are linearly independent.

Proposition 2.18. v1, · · · , vn is a basis of V iff every vector v ∈ V can be uniquely written
as a linear combination of v1, · · · , vn.

Lemma 2.19. Let v1, · · · , vm ∈ V be a list of vectors that spans V , i.e. span(v1, · · · , vm) =
V . Then {v1, · · · , vm} can be reduced to a basis of V . In other words, there exists a basis
{w1, · · · , wn} of V such that wi ∈ {v1, · · · , vm} for all i and n  m.

Lemma 2.20. Let v1, · · · , vk ∈ V be linearly independent. Then there exists a basis of V in
the form

{v1, · · · , vk, w1, · · · , wm}
Note that it’s possible that m = 0, in the case when {v1 · · · vk} is already a basis.

Corollary 2.21. If U is a subspace of V , then there exists another subspace W such that
V = U ⊕W .

Proposition 2.22. If v1, · · · , vn is a basis of V and w1, · · · , wm is another basis of V . Then
n = m.

Definition 2.23. Define the dimension of a vector space to be the size of its basis.

Proposition 2.24. If {v1, · · · , vn} linearly independent and n = dim(V ), then {v1, · · · , vn}
is a basis.

Proposition 2.25. If U is a subspace of V , then dim(U)  dim(V ). Furthermore, dim(U) =
dim(V ) iff U = V .

Proposition 2.26. If span(v1, · · · , vn) = V and n = dim(V ), then {v1, · · · , vn} is a basis.

Theorem 2.27. Let V be a finite dimensional vector space and V1, V2 subspaces. Then

dim(V1 + V2) = dim(V1) + dim(V2)− dim(V1 ∩ V2)

Corollary 2.28. If V1 + V2 is a direct sum, then dim(V1 ⊕ V2) = dim(V1) + dim(V2).
4

3. Linear Maps and Matrices

3.1. Linear Maps. Let V,W be vector spaces over F.

Definition 3.1. A map T : V  W is linear if

(1) T (u+ v) = T (u) + T (v) for all u, v ∈ V .
(2) T (λv) = λT (v) for all λ ∈ F and v ∈ V .

Definition 3.2. We denote the set of all linear maps from V  W by Hom(V,W ). And
define End(V ) = Hom(V, V ).

4We will see later that the converse is also true.
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Lemma 3.3. Let v1, · · · , vn be a basis for V and w1, · · · , wn a basis for W (i.e. V,W same
dimension). Then there exists a unique linear map T ∈ Hom(V,W ) such that T (vi) = wi

for all i. The map is given by T (a1v1 + · · ·+ anvn) = a1w1 + · · ·+ anwn.

Proposition 3.4. The set Hom(V,W ) is a vector space over F, with addition and scalar
multiplication given as follows.

(ϕ+ ψ)(v) := ϕ(v) + ψ(v)

(λϕ)(v) := λϕ(v)

Lemma 3.5. Let T ∈ Hom(V,W ), then T (0V ) = 0W .

Let T ∈ Hom(V,W ).

Definition 3.6. The kernal (or null space) of T is Ker(T ) = {v ∈ V : Tv = 0}

Proposition 3.7. Ker(T ) is a subspace of V .

Proposition 3.8. Ker(T ) = {0} if and only if T is injective.

Definition 3.9. The image (or range) of T is Img(T ) = {Tv|v ∈ V }

Proposition 3.10. Img(T ) is a subspace of W .

Proposition 3.11. T is surjective iff Img(T ) = W .

Theorem 3.12. dim(V ) = dim(Ker(T )) + dim(Img(T )).

Proposition 3.13. (1) if dim(V ) > dim(W ), then any T ∈ Hom(V,W ) is not injective.
(2) if dim(V ) < dim(W ), then any T ∈ Hom(V,W ) is not surjective.
(3) if there exists a bijective T ∈ Hom(V,W ), then dim(V ) = dim(W ).

3.2. Matrices from Linear Maps. Denote the set of all m × n matrix with entries in F
by Mm×n(F). Let V,W be finite dimensional vector spaces over F.

Definition 3.14. Suppose V has basis v1, · · · , vn and W has basis w1, · · · , wm. Let T ∈
Hom(V,W ). Then define M(T ) to be the matrix [aij] such that

T (vk) = a1kw1 + a2kw2 + · · ·+ am,kwm.

Remark 3.15. Note that the usage of M requires a choice of basis for V and W . In general
we shall denote MB1,B2(T ) where B1 is the basis for V and B2 the basis for W . However in
most case we will omit the subscript when the context is clear.

Proposition 3.16. Let S, T ∈ Hom(V,W ), M(S) +M(T ) = M(S + T )
Let S ∈ Hom(U,W ) and T ∈ Hom(V, U), then M(S)M(T ) = M(ST ).

Definition 3.17. For any A ∈ Mm×n, Let A•,k denote the k-th column vector and Ak,• denote
the k-th row vector.

Proposition 3.18. (AB)•,k = A(B•,k)

Theorem 3.19. For any A ∈ Mm×n, we have

dim(span(A1,•, · · · , Am,•)) = dim(span(A•,1, · · · , A•,n))

Proposition 3.20. The dimension of column span or row span of a matrix equals to its rank
(see Definition 1.17).
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Definition 3.21. A linear map T ∈ Hom(V,W ) is invertible if there exists an linear map
S ∈ Hom(W,V ) such that TS = idW and ST = idV .

Proposition 3.22. If a map T is invertible, then its inverse is unique, denote it by T−1.

Proposition 3.23. A map T is invertible iff M(T ) is non-singular Definition 1.7. Further-
more, M(T−1) = M(T )−1.

Definition 3.24. A linear map is an isomorphism if it’s invertible. Two vectors spaces are
isomorphic if there exists an isomorphism between them.

Theorem 3.25. Two vector spaces over F is isomorphic if and only if they have the same
dimension. (In other words, vector spaces are classified by N)

Corollary 3.26. Let dimV = n and dimW = m. The vector space Hom(V,W ) ∼= Mm×n(F)
are isomorphic, with the map M being the isomorphism.

Theorem 3.27. Let V be a vector space with basis B1 = {v1, · · · , vn}. Suppose it has
another basis B2 = {w1, · · · , wn}. Let C = MB1,B2(id) where id ∈ Hom(V, V ) is the identity
map. Then change of basis corresponds to conjugation by C.

In particular, let T ∈ Hom(V, V ) and A = MB1,B1(T ) and B = MB2,B2(T ). Then we
have

A = C−1BC

3.3. Quotient and Dual spaces.

Definition 3.28. Let v ∈ V and U ⊆ V . Define v + U := {v + u|u ∈ U}. This is called a
coset.

Definition 3.29. Let U ⊆ V . Define the quotient space V/U to be {v + U |v ∈ V }, with
addition and scalar multiplication given by

(v1 + U) + (v2 + U) = (v1 + v2) + U

λ(v + U) = λv + U

Definition 3.30 (alternative definition). Let ∼ be an equivalence relation on V . Define
[v]∼ := {u ∈ V |u ∼ v} the equivalence class generated by v. Then we can define quotient
space V/ ∼:= {[v]∼|v ∈ V }.
Remark 3.31. For U ⊂ V , define an equivalence relation ∼U by v ∼U u ⇐⇒ v − u ∈ U .
Then Definitions 3.29 and 3.30 agree, i.e. V/U = V/ ∼U .

Definition 3.32. For U ⊂ V , define the quotient map π : V  V/U by π(v) = v + U . Note
that Ker(π) = U .

Proposition 3.33. dimV/U = dimV − dimU .

Theorem 3.34. For any T ∈ Hom(V,W ), define T̃ ∈ Hom(V/Ker(T ),W ) by T̃ (v +
Ker(T )) = Tv. Then T̃π = T , and defines an isomorphism between V/Ker(T ) and Img(T ).

Definition 3.35. A linear map from V to F is called a linear functional. Denote Hom(V,F)
the set of all linear functionals on V .

Proposition 3.36. Hom(V,F) is a vector space, with addition and multiplication given by
(f + g)(v) = f(v) + g(v) and (λf)(v) = λf(v). This is called the dual space of V , and is
denoted by T ∗.
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Proposition 3.37. dimV = dimV ∗.

Definition 3.38. Let v1, · · · , vn be a basis of V . Then define v∗i ∈ V ∗ to be the linear
functional v∗i (vj) = δi,j

5. For any v = a1v1 + · · · anvn ∈ V , define v∗ = a1v
∗
1 + · · ·+ anv

∗
n.

Proposition 3.39. Let v1, · · · , vn be a basis. Then v = v∗1(v)v1+ · · ·+v∗n(v)vn for all v ∈ V .

Proposition 3.40. v∗1, · · · , v∗n is a basis for V ∗.

Definition 3.41. Suppose T ∈ Hom(V,W ). Define the dual linear map T ∗ ∈ Hom(W ∗, V ∗)
to be

T ∗(f) = f ◦ T

Proposition 3.42. • (S + T )∗ = S∗ + T ∗

• (λT )∗ = λT ∗.
• (ST )∗ = T ∗S∗.

Definition 3.43. For any subspace U ⊆ V , define its annihilator U0 := {f ∈ V ∗ : f(u) =
0 for all u ∈ U}.

Proposition 3.44. U0 is a subspace of V ∗.

Proposition 3.45. dimU0 = dimV −dimU . Recall that this is also the dimension of V/U .
In particular, there is an isomorphism (V/U)∗ ∼= U0 given by π∗.

Proposition 3.46. (a) U0 = {0} ⇐⇒ U = V (b) U0 = V ∗ ⇐⇒ U = {0}.

Theorem 3.47. (a) (Img T )0 = KerT ∗ (b) (KerT )0 = Img T ∗

Corollary 3.48. KerT ∗ ∼= (V/ Img T )∗ and Img T ∗ ∼= (V/KerT )∗.

Corollary 3.49. T is injective iff T ∗ is surjective. T is surjective iff T ∗ is injective.

Theorem 3.50. Let T ∈ Hom(V,W ), and T ∗ ∈ Hom(W ∗, V ∗). Then M(T )t = M(T ∗).

4. Inner Product Spaces

Throughout this section, let F = R or C.

4.1. Inner Products and Norms.

Definition 4.1. The dot product of two vectors in Rn is a map from Rn ×Rn  F, defined by

(x1, · · · , xn) · (y1, · · · , yn) = x1y1 + · · ·+ xnyn

Definition 4.2. The dot product of two vectors in Cn is a map from Cn ×Cn  F, defined by

(x1, · · · , xn) · (y1, · · · , yn) = x1y1 + · · ·+ xnyn

where a+ bi = a− bi is the complex conjugate.

Definition 4.3. Let V be vector space over F (C or R). A inner product on V is a map
V × V  F which sends (v, u) to 〈v, u〉 such that

(1) 〈v, v〉  0.
(2) 〈v, v〉 = 0 ⇐⇒ v = 0.
(3) 〈u+ v, w〉 = 〈u, w〉+ 〈v, w〉

5Here δi,j is the Kronecker delta symbol: δi,j = 1 if i = j and 0 otherwise.
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(4) 〈λu, v〉 = λ〈u, v〉.
(5) 〈u, v〉 = 〈v, u〉6

Proposition 4.4 (Bilinearity). A inner product 〈 , 〉 satisfy 〈u, v+w〉 = 〈u, v〉+ 〈u, w〉 and
〈u,λv〉 = λ〈u, v〉.
Remark 4.5. A pairing satisfying (4) and (6) of Definition 4.3 and Proposition 4.4 together
is known as being bilinear. Usually a inner product is defined to be bilinear, however, as we
see here one-sided linearity is enough to imply bilinearity.

Proposition 4.6. An inner product 〈 , 〉 on V satisfy

(1) Fix any u ∈ V , the map v  〈u, v〉 is a linear functional.
(2) 〈v, 0〉 = 0 = 〈0, v〉 for any v ∈ V .

Definition 4.7. Given an inner product 〈 , 〉, define the norm   to be the positive square-

root v =


〈v, v〉.

Proposition 4.8. Let I = [a, b] ⊂ R be an closed interval on R. Let V = C0(I) denote all
continuous R-valued functions defined on I (domain is I). Then

〈f, g〉 =
 b

a

f(x)g(x) dx

defines an inner product on V . The norm f =


〈f, g〉 is called the L2 norm on C0(I).

Definition 4.9. For z ∈ C, define the complex modulus to be |z| =
√
zz. Note that when z

is real (i.e. no imaginary part), then |z| is the absolute value.

Theorem 4.10 (Cauchy-Schwartz inequality). Let V be an inner product space with inner
product 〈 , 〉 and norm  . Then for any u, v ∈ V , we have

|〈u, v〉|  uv
Moreover, the equality occurs only when u, v are linearly independent.

Remark 4.11. The Cauchy-Schwartz inequality tells us that the ratio |〈u,v〉|
uv is in between −1

and 1. Therefore we can define the ‘abstract’ angle between two vectors v, u to be

θu,v = arccos
|〈u, v〉|
uv

Definition 4.12. We say two vectors u, v are orthogonal if 〈u, v〉 = 0.

Proposition 4.13. If v, u orthogonal in V , then v2 + u2 = v + u2.

Remark 4.14. Definition 4.12 generalizes the usual notion of orthogonality in R2 in a sense
that when two vectors are orthogonal, then the angle between then is θu,v = π/2.

Theorem 4.15. Let V be an inner product space, and u, v ∈ V . Then u+ v  u+ v.
Definition 4.16. We can define norms more generally without requiring an inner product. A
norm on V is a map  ·  : V  R0 such that

• v  0 and v = 0 only when v = 0.
• λv = |λ|v

6When F = R, the ‘complex’ conjugate of a real number is just itself.
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• v + u  v+ u

Proposition 4.17. Let K = (kij) be the matrix whose entries are the inner product of the
basis vectors, i.e. kij = 〈ei, ej〉. Then for x = (x1, · · · , xn) and y = (y1, · · · , yn) we have

〈x, y〉 =



i

xiei,


j

yjej


=



i,j

xiyj〈ei, ej〉 = xtKy

Definition 4.18. A n × n matrix is positive-definite if Kt = K and satisfy xtKx > 0 for all
0 ∕= x ∈ Fn. More generally, we say K is positive semi-definite if Kt = K and xtKx  0 for
all x.

Theorem 4.19. Every inner product is given by 〈x, y〉 = xtKy where K is a positive-definite
matrix.

Proposition 4.20. Positive-definite matrices are non-singular (invertible).

Definition 4.21. Given any v1, · · · , vn ∈ V , we define the Gram matrix to be K = (kij) where
kij = 〈vi, vj〉. In particular, Let A be the matrix whose column vectors are v1, · · · , vn, then
the Gram matrix is K = AtCA, where C is the symmetric positive definite matrix defining
the inner product.

Proposition 4.22. A Gram matrix is always positive semi-definite. A Gram matrix is
positive-definite if and only if v1, · · · , vn are linearly independent.

Proposition 4.23. Let A be an m× n matrix (m  n), then TFAE:

• K = AtA is positive-definite;
• Ker(A) = 0;
• A has linearly independent columns;
• rank(A) = n.

Theorem 4.24. Suppose A ∈ Mm×n and K = ATA is positive-definite. Then for any
symmetric positive definite matrix C ∈ Mm×m, the matrix K ′ = AtCA is also positive-
definite.

Proposition 4.25. For K = AtCA, we have Ker(K) = Ker(A), and hence rank(K) =
rank(A).

4.2. Orthonormal Basis.

Definition 4.26. Let V be a real or complex inner product space. A basis v1, · · · , vn of V
is called orthogonal if 〈vi, vj〉 = δi,j for all i. An orthogonal basis of unit vectors is called
orthonormal.

Proposition 4.27. Let v1, · · · , vn ∈ V be pair-wise orthogonal, then they must be linearly
independent.

Corollary 4.28. Let v1, · · · , vn ∈ V be pair-wise orthogonal, then they form a basis for
span(v1, · · · , vn).

Proposition 4.29. If e1, · · · , en is an orthonormal basis, then for any v ∈ V , we have that

• v = 〈v, e1〉e1 + · · ·+ 〈v, en〉en
• v2 = |〈v, e1〉|2 + · · ·+ |〈v, en〉|2
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Proposition 4.30. If e1, · · · , en is an orthonormal basis, then

Theorem 4.31. Given any basis w1, · · · , wn of V , one can construct an orthogonal basis
v1, · · · , vn using the Gram-Schmidt process:

• v1 = w1.

• v2 = w2 −
〈w2, v1〉
v12

v1

• v3 = w3 −
〈w3, v1〉
v12

v1 −
〈w3, v2〉
v22

v2

• · · ·

• vk = wk −
k−1

i=1

〈wk, vi〉
vi2

vi

• · · · .

Corollary 4.32. Every finite dimensional inner-product space has an orthonormal basis.

Theorem 4.33. Suppose V is finite-dimensional and T is a linear functional on V . Then
there is a unique vector v ∈ V such that T (u) = 〈u, v〉for every u ∈ V .

Definition 4.34. A matrix A is orthogonal if AtA = I = AAt, or equivalently At = A−1.

Proposition 4.35. A matrix is orthogonal if and only if its column vectors form an or-
thonormal basis of Fn w.r.t the dot product.

Definition 4.36. Let W ⊂ V be a subspace. A vector v ∈ V is said to be orthogonal to W
is 〈v, w〉 = 0 for all w ∈ W .

Definition 4.37. Two subspaces W,U ⊂ V are said to be orthogonal if 〈w, u〉 = 0 for all
w ∈ W,u ∈ U .

Definition 4.38. The orthogonal complement of a subset W ⊂ V , denoted W⊥, is the set of
all vectors in V that are orthogonal to W .

W⊥ = {v ∈ V |〈v, w〉 = 0 for all w ∈ W}

Proposition 4.39. Let U⊥ be the orthogonal complement of U ⊂ V .

(1) U⊥ is always a subspace of V 7.
(2) {0}⊥ = V .
(3) V ⊥ = {0}
(4) U⊥ ∩ U ⊆ {0}.
(5) If W ⊂ U ⊂ V , then U⊥ ⊂ W⊥.

Proposition 4.40. Let U be a finite dimensional subspace of V , then

V = U⊥ ⊕ U

And dimU⊥ = dimV − dimU .

Proposition 4.41. U = (U⊥)⊥

7Even if U is not a subspace.
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Definition 4.42. The orthogonal projection of v onto W , denoted ProjW (v) is the element
w ∈ W such that v − w is orthogonal to W .

In other words, if we write v in the direct sum of V = W⊥⊗W as v = w′+w with w ∈ W
and w′ ∈ W⊥, then ProjW (v) = w′.

Theorem 4.43. Let w1, · · · , wn be an orthogonal basis for a subspace W ⊂ V . Then the
orthogonal projection of v onto W is

ProjW (v) = 〈v, u1〉u1 + · · ·+ 〈v, un〉un

Definition 4.44. Define the cokernel of a linear map T ∈ Hom(V,W ) to be the quotient space
coKer(T ) = W/ Img(T ) and the coimage to be coImg(T ) = V/Ker(T ).

Theorem 4.45. We have Ker(T ) = coImg(T )⊥ and Img(T ) = coKer(T )⊥

Proposition 4.46. The equation Ax = b has a solution if b is orthogonal to the cokernel of
A.

5. Eigenvalues and Eigenvectors

Definition 5.1. Let A be an n × n complex or real matrix, then λ is an eigenvalue of A if
there exists a non-zero vector v, called an eigenvector, such that Av = λv.

Proposition 5.2. λ is an eigenvalue of A if and only if A− λI is singular, i.e. there exist
solutions to the equation (A− λI)v = 0.

Definition 5.3. The characteristic polynomial of A, denoted PA(x), is defined to be

PA(x) = det(A− xI)

Remark 5.4. A matrix A and its transpose At have the same characteristic polynomial.

Proposition 5.5. Over the complex numbers, the characteristic polynomial can be factored
into

PA(x) = (−1)n(x− λ1)(x− λ2) · · · (x− λn)

where λ1, · · · ,λn are the complex eigenvalues of A.

Proposition 5.6. λ1 + · · ·+ λn = tr(A) and λ1λ2 · · ·λn = det(A).

Definition 5.7. The algebraic multiplicity of an eigenvalue λ is its multiplicity as a root of
PA(x).

Proposition 5.8. If v1, · · · , vk are eigenvectors corresponding to distinct eigenvalues λ1, · · · ,λk,
then v1, · · · , vk are linearly independent.

Definition 5.9. Let λ be an eigenvalue of A, then the eigenspace corresponding to λ, denoted
by Vλ is the space Ker(A− λI). The dimension of Vλ is called the geometric multiplicity of
λ.

Definition 5.10. A matrix A is called complete if the algebraic multiplicity and geometric
multiplicity of all eigenvalues equal.

Proposition 5.11. A n× n matrix with n distinct eigenvalues is complete.
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Theorem 5.12. Every complete matrix A can be diagonalized as follows

A = SDS−1

where D = diag(λ1, · · · ,λn) and S is the matrix whose columns are linearly independent
eigenvectors v1, · · · , vn.

Remark 5.13. We will more often call complete matrices diagonalizable.

Theorem 5.14. If A is a diagonalizable (complete) matrix, then all the k dimensional
complex invariant subspace of A are spanned by linearly independent eigenvectors of A.

Proposition 5.15. Every real symmetric matrix is diagonalizable.

Theorem 5.16 (spectral decomposition). Let A be a symmetric matrix, then A = QDQt

where D is the diagonal matrix of eigenvalues of A, and Q is an orthogonal matrix whose
columns are the orthonormal eigenvectors of A.

Corollary 5.17. A symmetric real matrix A is positive definite if and only if all of its eigen-
values are positive. (Note that when A is not necessary symmetric, being positive definite
implies having positive eigenvalues, but the converse is not always true). A symmetric ma-
trix A is positive semi-definite if and only if all of its eigenvalues are non-negative (possibly
zero).

Definition 5.18. Let λ be an eigenvalue of A. Then a Jordan chain of λ is a list of vectors
w1, · · · , wk such that

Aw1 = λw1, Aw2 = λw2 + w1, · · · , Awk = λwk + wk−1

Definition 5.19. A non-zero vector w is called a generalized eigenvector of A if (A−λI)kw = 0
for some finite number k.

Definition 5.20. A Jordan basis of a square matrix A is a basis of Cn (or Rn) consisting of
Jordan chains of A.

Theorem 5.21. Every square matrix has a Jordan basis.

Definition 5.22. A Jordan block is a matrix such that the diagonal entries are the same
number, the super-diagonal entires are either 1 or 0, and the other entires are zero.

Definition 5.23. A Jordan canonical form of a square matrix A, is the block-diagonal matrix
where each diagonal block is a Jordan block with eigenvalues on the diagonal. Denote JA
the Jordan canonical form of A.

Theorem 5.24. Any square matrix A can be written as A = SJAS
−1 where JA is the Jordan

canonical form of A, and S is the matrix whose columns form the Jordan basis.

Remark 5.25. The number of Jordan blocks in JA equals to the number of Jordan chains in
the Jordan basis of A.

Definition 5.26. The singular values of a general (non-square) matrix are the square roots
of the eigenvalues of the Gram matrix K = AtA.

Theorem 5.27. Every m× n matrix of rank r can be written as

A = PΛQt
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where Λ is a r× r diagonal matrix with the singular values of A. The columns of A form an
orthogonal basis for Img(A) and the columns of Q form an basis for coImg(A). In particular,
the columns of Q are the normalized eigenvectors of the Gram matrix K = AtA corresponding
to the non-zero eigenvalues.

Remark 5.28. If A has no zero eigenvalue, then the SVD of A is ‘the same’ as the spectral
decomposition of K = AtA: K = AtA = (QΛP t)(PΛQt) = QΛ2Qt.


