MATH 4242 Applied Linear Algebra

Sylvester W. Zhang

Summer 2024

CONTENTS

1. Systems of Linear Equations

A $m \times n$ system of linear equation is of the form

$$
a_{11}x_1 + \dots + a_{n1}x_n = b_1
$$

$$
a_{21}x_1 + \dots + a_{n2}x_n = b_n
$$

$$
\dots \dots \dots
$$

$$
a_{m1}x_1 + \cdots + a_{mn}x_n = b_n
$$

Such equation can be represented using product of matrices.

or by an augmented matrix.

<swzhang@umn.edu> University of Minnesota.

$$
\begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} & b_1 \\ a_{21} & a_{22} & \cdots & a_{m2} & b_2 \\ \cdots & \cdots & \cdots & \cdots & b_n \end{bmatrix}
$$

$$
\begin{bmatrix} a_{m1} & a_{m2} & \cdots & a_{mn} & b_n \end{bmatrix}
$$

Definition 1.1*.* We have three types of elementary row operations.

- (1) Multiply the *i*-th equation (or the *i*-th row of the augmented matrix), then add it to the *j*-th equation (or the *j*-th row of the augmented matrix).
- (2) Permute the equations (or the rows of the augmented matrix)
- (3) Multiply one equation (or one row of the augmented matrix) by a non-zero number.
- 1.1. **Systems of** $n \times n$ **Equations.** Matrices considered in this sections are all $n \times n$.

Definition 1.2*.* A matrix is *regular* if it can be turned into a upper triangular matrix such that every entry on the diagonal is non-zero.

Proposition 1.3. Let E be the matrix with 1's on the diagonal and $E_{ij} = k \neq 0$ is the only *other non-zero entry in the lower triangular part. Then for any matrix M, EM is the matrix obtained by multiplying the j-th row of M then adding to the i-th row of M.*

Proposition 1.4. *A matrix A is regular if and only if it has an LU factorization, i.e.*

 $A = LU$

where L is a lower uni-triangular matrix, and U is a upper triangular matrix with non-zero diagonal entries.

Definition 1.5. Let $w \in S_n$ be a permutation, then define $P_w = \{a_{ij}\}\$ to be the matrix such that

$$
a_{i,j} = \begin{cases} 1 & j = w(i) \\ 0 & \text{otherwise.} \end{cases}
$$

Proposition 1.6. *For any matrix M, PwM is the matrix obtained by permuting the rows of M according to the permutation w.*

Definition 1.7*.* A matrix *A* is called *non-singular* if it can be turned into a upper triangular matrix without non-zero diagonal entry via row operations of the first two types.

Proposition 1.8. *A matrix A is non-singular if and only if it has a permuted LU factorization:* $PA = LU$ *where* P *is some permutation matrix.*

Definition 1.9. Let $A = (a_{ij})$, defined transpose of A to be $A^t := (a_{ji})$.

Proposition 1.10. Denote A^t the transpose of A . We have that $AB = (BA)^t$.

Proposition 1.11. A matrix A is regular iff it admits an LDV factorization, $A = LDU$ *where L is lower-unitriangular matrix, D is a diagonal matrix, and U is a uni-upper triangular matrix.*

Definition 1.12. Let *A* be an $n \times n$ matrix. Suppose *X* is a matrix such that $XA = AX = I$ where *I* is the identity matrix. Then *X* is called the inverse of *A* and denoted by A^{-1} . A matrix is called *invertible* if *A*−¹ exists.

Proposition 1.13. *A matrix is invertible if and only if it is non-singular.*

Remark 1.14*.* Inverse of a matrix can be found using Gauss-Jordan Elimination — see chapter 1 of Olver-Shakiban.

1.2. Systems of $m \times n$ Equations.

Definition 1.15*.* A matrix is in row echelon form if it looks like,

$$
\begin{pmatrix}\n\bullet & * & * & * & * \\
0 & \bullet & * & * & * \\
0 & 0 & 0 & \bullet & * & * \\
0 & 0 & 0 & 0 & 0 & 0\n\end{pmatrix}
$$

where *•*'s are non-zero entries (called *pivots*) and ∗ represent generic entries. The pivots are the first non-zero entries in each rows. We require the pivots occupy the first several rows consecutively.

Proposition 1.16. *Every matrix can be turned into a row echelon form using elementary row operations of type I and II. In other words, every matrix A has a factorization PA* = *LU where P is a permutation matrix, L is a lower uni-triangular matrix, and U a matrix in row-echelon form.*

Definition 1.17*.* Since every matrix can be turned in to row-echelon form using elementary row operations, we define its *rank* to be the number of pivots.

Proposition 1.18. A square $n \times n$ matrix is non-singular if its rank is n (full-rank).

2. Vector Spaces

2.1. Some Basic Setup.

Definition 2.[1](#page-2-3). ¹ A field is a set **F** with two binary operations \times (multiplication) and + (addition), satisfying the following axioms.

- $a + b = b + a$ and $a \times b = b \times a$ for all $a, b \in \mathbb{F}$.
- There exists an additive identity 0 such that $0 + a = a + 0 = a$ for all $a \in \mathbb{F}$.
- There exists a multiplication identity 1 such that $1 \times a = a \times 1 = a$ for all $a \in \mathbb{F}$.
- For every $a \in \mathbb{F}$, there exists an element denoted $-a$, such that $a + (-a) = 0$.
- $0 \neq 1$.
- For every $a \in \mathbb{F}$ and $a \neq 0$, there exists an element denoted a^{-1} , such that $a \times (a^{-1}) =$ 1.
- For every $a, b, c \in \mathbb{F}$, $a \times (b + c) = ab + ac$.

For most part of this class, we will take $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C} = \{a + bi | a, b \in \mathbb{R} \text{ and } i^2 = -1\}.$

Definition [2](#page-2-4).2. For a field \mathbb{F} , denote $\mathbb{F}[x]$ the ring² of polynomials over \mathbb{F} .

$$
\mathbb{F}[x] = \{a_0 + a_1x + a_2x^2 + \cdots + a_nx^n | a_0, \cdots, a_n \in \mathbb{F}, n \geq 0, x^mx^n = x^{m+n}\}\
$$

Proposition 2.3. Every polynomial $a_0 + a_1x + a_2x^2 + \cdots + a_nx^n = 0$ with complex coefficient *has at least one complex solution. Note that this is not true for real polynomials.*

Definition 2.4. A field \mathbb{F} is called *algebraically closed* if every polynomial in $\mathbb{F}[x]$ has a solution in **F**. (By Proposition [2.3](#page-2-5), **C** is algebraically closed).

¹You don't need to worry too much about the abstract structures of a field. The purpose of this definition is to make everything self-contained. You can basically think of a field as a set on which you can do some sort of arithmetic.

 2 A ring is a field, where multiplication need not to be commutative, and multiplicative identity (0) need not exists.

Proposition 2.5. *The field of complex numbers* **C** *is the algebraic closure of* **R***. In other words,* **C** *is the smallest algebraically closed field that contains* **R***.*

2.2. Vector Spaces and Subspaces. Let **F** be a field.

Definition 2.6*.* A set *V* is called a vector space over **F** if there exists an addition map

$$
add: V \times V \to V,
$$

a scalar multiplication map

$$
mult: \mathbb{F} \times V \to V,
$$

and a zero vector 0 such that $v + 0 = v$ for all $v \in V$ and $\lambda 0 = 0$ for all $\lambda \in \mathbb{F}$. (Here \times denote the Cartesian product of sets^{[3](#page-3-2)}.) We will abbreviate them by $a(v_1, v_2) = v_1 + v_2$ and $mult(a, v) = av.$

Note that this definition (implicitly) requires that a vector space *V* is closed under addition and scalar multiplication, i.e. $v_1 + v_2 = add(v_1, v_2) \in V$ and $av = mult(a, v) \in V$.

Elements of a vector spaces are called *vectors.*

Definition 2.7. Let *V* be a vector space over **F**. A subset *U* of *V* is a *subspace* if it is closed under addition and scalar multiplication, and contains the zero vector. (In other words, a subspace is a subset that is a vector space itself.)

Definition 2.8. Let U_1, \dots, U_m be subspaces of *V*. Then define their sum to be

$$
U_1 + \dots + U_m = \{u_1 + \dots + u_m | u_1 \in U_1, \dots, u_m \in U_m\}
$$

Proposition 2.9. Let U_1, \dots, U_m be subspaces of V. Then $U_1 + \dots + U_m$ is also a subspace of V, furthermore, it's the smallest subspace of V that contain all of U_1, \dots, U_m .

Definition 2.10. A sum of subspaces $U_1 + \cdots + U_m$ of V is a *direct sum* if every vector $v \in U_1 + \cdots + U_m$ can be uniquely written as $v = u_1 + \cdots + u_m$ where $u_i \in U_i$ for each i. When a summation is direct, we denote it as $U_1 \oplus \cdots \oplus U_m$.

2.3. Linear Combination, Span, and Dimension. Let *V* be a vector space over **F**.

Definition 2.11. Let $v_1, v_2, \dots, v_n \in V$, a vector $v \in V$ is a linear combination of $\{v_1, \dots, v_n\}$ if there exists $a_1, \dots, a_n \in \mathbb{F}$ such that

$$
v = a_1v_1 + \dots + a_nv_n
$$

Definition 2.12. Let v_1, v_2, \dots, v_n be a list of vectors in *V*, define their span to be the set of all linear combinations of v_1, \dots, v_n .

$$
\mathrm{span}(v_1,\cdots,v_n)=\{a_1v_1+\cdots+a_nv_n|a_1,\cdots,a_n\in\mathbb{F}\}
$$

Proposition 2.13. For a list of vectors $v_1, \dots, v_n \in V$, $\text{span}(v_1, \dots, v_n)$ is a subspace of *V*. Furthermore, it's the smallest subspace containing all of v_1, \dots, v_n .

Definition 2.14*.* A vector space *V* is said to be *finite dimensional* it it is the span of a finitely many vectors.

Definition 2.15. $v_1, \dots, v_m \in V$ are *linearly independent* if the only way to write 0 as a linear combination of v_1, \dots, v_n is

$$
0 = 0v_1 + 0v_2 + \cdots + 0v_n.
$$

³For sets *A* and *B*, defined $A \times B = \{(a, b) | a \in A, b \in B\}$

Proposition 2.16. $v_1, \dots, v_m \in V$ *are* linearly independent *if and only if any vector* $v \in V$ $\text{span}(v_1, \dots, v_m)$ can be uniquely written as a linear combination of v_1, \dots, v_n .

Definition 2.17. A list of vectors v_1, \dots, v_n is a basis of *V* if

- $V = \text{span}(v_1, \dots, v_n)$
- v_1, \dots, v_n are linearly independent.

Proposition 2.18. v_1, \dots, v_n is a basis of V iff every vector $v \in V$ can be uniquely written as a linear combination of v_1, \dots, v_n .

Lemma 2.19. Let $v_1, \dots, v_m \in V$ be a list of vectors that spans V, i.e. $\text{span}(v_1, \dots, v_m) =$ V. Then $\{v_1, \dots, v_m\}$ can be reduced to a basis of V. In other words, there exists a basis $\{w_1, \dots, w_n\}$ of V such that $w_i \in \{v_1, \dots, v_m\}$ for all i and $n \leq m$.

Lemma 2.20. Let $v_1, \dots, v_k \in V$ be linearly independent. Then there exists a basis of V in *the form*

$$
\{v_1,\cdots,v_k,w_1,\cdots,w_m\}
$$

Note that it's possible that $m = 0$, in the case when $\{v_1 \cdots v_k\}$ is already a basis.

Corollary 2.21. *If U is a subspace of V , then there exists another subspace W such that* $V = U \oplus W$.

Proposition 2.22. If v_1, \dots, v_n is a basis of V and w_1, \dots, w_m is another basis of V. Then $n = m$.

Definition 2.23*.* Define the dimension of a vector space to be the size of its basis.

Proposition 2.24. If $\{v_1, \dots, v_n\}$ linearly independent and $n = \dim(V)$, then $\{v_1, \dots, v_n\}$ *is a basis.*

Proposition 2.25. *If U* is a subspace of *V*, then $\dim(U) \leq \dim(V)$. Furthermore, $\dim(U)$ = dim(V) *iff* $U = V$.

Proposition 2.26. If $\text{span}(v_1, \dots, v_n) = V$ and $n = \text{dim}(V)$, then $\{v_1, \dots, v_n\}$ is a basis.

Theorem 2.27. *Let V be a finite dimensional vector space and V*1*, V*² *subspaces. Then*

$$
\dim(V_1 + V_2) = \dim(V_1) + \dim(V_2) - \dim(V_1 \cap V_2)
$$

Corollary 2.28. *If* $V_1 + V_2$ *is a direct sum, then* $\dim(V_1 \oplus V_2) = \dim(V_1) + \dim(V_2)$.^{[4](#page-4-2)}

3. Linear Maps and Matrices

3.1. Linear Maps. Let *V, W* be vector spaces over **F**.

Definition 3.1. A map $T: V \to W$ is linear if

(1) $T(u + v) = T(u) + T(v)$ for all $u, v \in V$.

(2) $T(\lambda v) = \lambda T(v)$ for all $\lambda \in \mathbb{F}$ and $v \in V$.

Definition 3.2. We denote the set of all linear maps from $V \to W$ by Hom (V, W) . And define $\text{End}(V) = \text{Hom}(V, V)$.

⁴We will see later that the converse is also true.

Lemma 3.3. Let v_1, \dots, v_n be a basis for V and w_1, \dots, w_n a basis for W (i.e. V, W same *dimension*). Then there exists a unique linear map $T \in Hom(V, W)$ such that $T(v_i) = w_i$ for all i. The map is given by $T(a_1v_1 + \cdots + a_nv_n) = a_1w_1 + \cdots + a_nw_n$.

Proposition 3.4. The set $Hom(V, W)$ is a vector space over \mathbb{F} , with addition and scalar *multiplication given as follows.*

$$
(\varphi + \psi)(v) := \varphi(v) + \psi(v)
$$

$$
(\lambda \varphi)(v) := \lambda \varphi(v)
$$

Lemma 3.5. *Let* $T \in Hom(V, W)$ *, then* $T(0_V) = 0_W$ *.*

Let $T \in \text{Hom}(V, W)$.

Definition 3.6. The *kernal* (or null space) of *T* is $\text{Ker}(T) = \{v \in V : Tv = 0\}$

Proposition 3.7. Ker(*T*) *is a subspace of V*.

Proposition 3.8. Ker(*T*) = {0} *if* and only *if T is injective.*

Definition 3.9. The *image* (or range) of *T* is $\text{Im}(T) = \{Tv|v \in V\}$

Proposition 3.10. Img(*T*) *is a subspace of W.*

Proposition 3.11. *T is surjective iff* $\text{Img}(T) = W$ *.*

Theorem 3.12. dim(V) = dim($Ker(T)$) + dim($Img(T)$).

Proposition 3.13. (1) *if* dim(*V*) $>$ dim(*W*)*, then any* $T \in Hom(V, W)$ *is not injective.*

(2) *if* dim(*V*) \lt dim(*W*)*, then any* $T \in Hom(V, W)$ *is not surjective.*

(3) if there exists a bijective $T \in \text{Hom}(V, W)$, then $\dim(V) = \dim(W)$.

3.2. **Matrices from Linear Maps.** Denote the set of all $m \times n$ matrix with entries in F by $M_{m \times n}(\mathbb{F})$. Let *V, W* be finite dimensional vector spaces over \mathbb{F} .

Definition 3.14. Suppose V has basis v_1, \dots, v_n and W has basis w_1, \dots, w_m . Let $T \in$ Hom(*V, W*). Then define $\mathcal{M}(T)$ to be the matrix $[a_{ij}]$ such that

$$
T(v_k) = a_{1k}w_1 + a_{2k}w_2 + \cdots + a_{m,k}w_m.
$$

Remark 3.15. Note that the usage of M requires a choice of basis for *V* and *W*. In general we shall denote $\mathcal{M}_{B_1,B_2}(T)$ where B_1 is the basis for *V* and B_2 the basis for *W*. However in most case we will omit the subscript when the context is clear.

Proposition 3.16. *Let* $S, T \in \text{Hom}(V, W)$, $\mathcal{M}(S) + \mathcal{M}(T) = \mathcal{M}(S + T)$ $Let S \in Hom(U, W)$ *and* $T \in Hom(V, U)$ *, then* $\mathcal{M}(S) \mathcal{M}(T) = \mathcal{M}(ST)$ *.*

Definition 3.17. For any $A \in M_{m \times n}$, Let $A_{\bullet,k}$ denote the *k*-th column vector and $A_{k,\bullet}$ denote the *k*-th row vector.

Proposition 3.18. $(AB)_{\bullet,k} = A(B_{\bullet,k})$

Theorem 3.19. *For any* $A \in M_{m \times n}$ *, we have*

 $dim(\text{span}(A_{1,\bullet}, \cdots, A_{m,\bullet})) = \dim(\text{span}(A_{\bullet,1}, \cdots, A_{\bullet,n}))$

Proposition 3.20. *The dimension of column span or row span of a matrix equals to its rank (see Definition [1.17\)](#page-2-6).*

Definition 3.21. A linear map $T \in Hom(V, W)$ is invertible if there exists an linear map $S \in$ Hom (W, V) such that $TS = id_W$ and $ST = id_V$.

Proposition 3.22. *If a* map *T is invertible, then its inverse is unique, denote it by* T^{-1} *.*

Proposition 3.23. A map T is invertible iff $\mathcal{M}(T)$ is non-singular Definition [1.7.](#page-1-1) Further*more,* $\mathcal{M}(T^{-1}) = \mathcal{M}(T)^{-1}$.

Definition 3.24*.* A linear map is an *isomorphism* if it's invertible. Two vectors spaces are *isomorphic* if there exists an isomorphism between them.

Theorem 3.25. *Two vector spaces over* **F** *is isomorphic if and only if they have the same dimension. (In other words, vector spaces are classified by* **N***)*

Corollary 3.26. *Let* dim $V = n$ *and* dim $W = m$ *. The vector space* Hom $(V, W) \cong M_{m \times n}(\mathbb{F})$ *are isomorphic, with the map M being the isomorphism.*

Theorem 3.27. Let V be a vector space with basis $B_1 = \{v_1, \dots, v_n\}$. Suppose it has another basis $B_2 = \{w_1, \dots, w_n\}$. Let $C = \mathcal{M}_{B_1, B_2}$ (id) where $id \in Hom(V, V)$ is the identity *map. Then change of basis corresponds to conjugation by C.*

In particular, let $T \in \text{Hom}(V, V)$ and $A = \mathcal{M}_{B_1, B_1}(T)$ and $B = \mathcal{M}_{B_2, B_2}(T)$. Then we *have*

$$
A = C^{-1}BC
$$

3.3. Quotient and Dual spaces.

Definition 3.28. Let $v \in V$ and $U \subseteq V$. Define $v + U := \{v + u | u \in U\}$. This is called a *coset*.

Definition 3.29. Let $U \subseteq V$. Define the quotient space V/U to be $\{v + U|v \in V\}$, with addition and scalar multiplication given by

$$
(v_1 + U) + (v_2 + U) = (v_1 + v_2) + U
$$

$$
\lambda(v + U) = \lambda v + U
$$

Definition 3.30 (alternative definition). Let ∼ be an equivalence relation on *V*. Define $[v]$ _∼ := $\{u \in V | u \sim v\}$ the equivalence class generated by *v*. Then we can define quotient space $V/\sim:=\{[v]_{\sim}|v\in V\}.$

Remark 3.31. For $U \subset V$, define an equivalence relation \sim_U by $v \sim_U u \iff v - u \in U$. Then Definitions [3.29](#page-6-1) and [3.30](#page-6-2) agree, i.e. $V/U = V/\sim_U$.

Definition 3.32. For $U \subset V$, define the quotient map $\pi : V \to V/U$ by $\pi(v) = v + U$. Note that $\text{Ker}(\pi) = U$.

Proposition 3.33. dim $V/U = \dim V - \dim U$.

Theorem 3.34. For any $T \in Hom(V, W)$, define $\tilde{T} \in Hom(V/Ker(T), W)$ by $\tilde{T}(v +$ $Ker(T) = Tv$ *. Then* $\tilde{T}\pi = T$ *, and defines an isomorphism between* $V/Ker(T)$ *and* $Img(T)$ *.*

Definition 3.35. A linear map from *V* to **F** is called a *linear functional*. Denote Hom (V, \mathbb{F}) the set of all linear functionals on *V* .

Proposition 3.36. Hom (V, \mathbb{F}) *is a vector space, with addition and multiplication given by* $(f+g)(v) = f(v) + g(v)$ and $(\lambda f)(v) = \lambda f(v)$. This is called the dual space of V, and is *denoted by T*∗*.*

Proposition 3.37. dim $V = \dim V^*$.

Definition 3.38. Let v_1, \dots, v_n be a basis of *V*. Then define $v_i^* \in V^*$ to be the linear functional $v_i^*(v_j) = \delta_{i,j}^5$ $v_i^*(v_j) = \delta_{i,j}^5$. For any $v = a_1v_1 + \cdots + a_nv_n \in V$, define $v^* = a_1v_1^* + \cdots + a_nv_n^*$.

Proposition 3.39. Let v_1, \dots, v_n be a basis. Then $v = v_1^*(v)v_1 + \dots + v_n^*(v)v_n$ for all $v \in V$.

Proposition 3.40. v_1^*, \cdots, v_n^* is a basis for V^* .

Definition 3.41*.* Suppose $T \in Hom(V, W)$. Define the *dual linear* map $T^* \in Hom(W^*, V^*)$ to be

$$
T^*(f) = f \circ T
$$

Proposition 3.42. • $(S + T)^* = S^* + T^*$

- $(\lambda T)^* = \lambda T^*$.
- $(ST)^* = T^*S^*$.

Definition 3.43. For any subspace $U \subseteq V$, define its annihilator $U^0 := \{f \in V^* : f(u) =$ 0 for all $u \in U$.

Proposition 3.44. U^0 *is a subspace of* V^* .

Proposition 3.45. dim $U^0 = \dim V - \dim U$ *. Recall that this is also the dimension of* V/U *. In particular, there is an isomorphism* $(V/U)^* \cong U^0$ *given by* π^* *.*

Proposition 3.46. (a) $U^0 = \{0\} \iff U = V$ (b) $U^0 = V^* \iff U = \{0\}$.

Theorem 3.47. (a) $(\text{Im} g T)^0 = \text{Ker } T^*$ (b) $(\text{Ker } T)^0 = \text{Im} g T^*$

Corollary 3.48. Ker $T^* \cong (V/\operatorname{Img} T)^*$ *and* $\operatorname{Img} T^* \cong (V/\operatorname{Ker} T)^*$.

Corollary 3.49. *T* is injective iff T^* is surjective. *T* is surjective iff T^* is injective.

Theorem 3.50. *Let* $T \in Hom(V, W)$ *,* and $T^* \in Hom(W^*, V^*)$ *. Then* $\mathcal{M}(T)^t = \mathcal{M}(T^*)$ *.*

4. Inner Product Spaces

Throughout this section, let $\mathbb{F} = \mathbb{R}$ or \mathbb{C} .

4.1. Inner Products and Norms.

Definition 4.1. The dot product of two vectors in \mathbb{R}^n is a map from $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{F}$, defined by

$$
(x_1,\cdots,x_n)\cdot(y_1,\cdots,y_n)=x_1y_1+\cdots+x_ny_n
$$

Definition 4.2. The dot product of two vectors in \mathbb{C}^n is a map from $\mathbb{C}^n \times \mathbb{C}^n \to \mathbb{F}$, defined by

$$
(x_1, \cdots, x_n) \cdot (y_1, \cdots, y_n) = x_1 \overline{y}_1 + \cdots + x_n \overline{y}_n
$$

where $\overline{a + bi} = a - bi$ is the complex conjugate.

Definition 4.3. Let *V* be vector space over \mathbb{F} (C or R). A inner product on *V* is a map $V \times V \rightarrow \mathbb{F}$ which sends (v, u) to $\langle v, u \rangle$ such that

- $(1) \langle v, v \rangle \geq 0.$
- $(2) \langle v, v \rangle = 0 \iff v = 0.$
- (3) $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$

⁵Here $\delta_{i,j}$ is the Kronecker delta symbol: $\delta_{i,j} = 1$ if $i = j$ and 0 otherwise.

 $(4) \langle \lambda u, v \rangle = \lambda \langle u, v \rangle.$ (5) $\langle u, v \rangle = \overline{\langle v, u \rangle}^6$ $\langle u, v \rangle = \overline{\langle v, u \rangle}^6$

Proposition 4.4 (Bilinearity). A *inner product* \langle , \rangle *satisfy* $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$ *and* $\langle u, \lambda v \rangle = \lambda \langle u, v \rangle$.

Remark 4.5*.* A pairing satisfying (4) and (6) of Definition [4.3](#page-7-3) and Proposition [4.4](#page-8-1) together is known as being *bilinear*. Usually a inner product is defined to be bilinear, however, as we see here one-sided linearity is enough to imply bilinearity.

Proposition 4.6. An inner product \langle , \rangle on V satisfy

- (1) *Fix* any $u \in V$, the map $v \mapsto \langle u, v \rangle$ is a linear functional.
- $(2) \langle v, 0 \rangle = 0 = \langle 0, v \rangle$ *for any* $v \in V$.

Definition 4.7. Given an inner product \langle , \rangle , define the norm $\| \cdot \|$ to be the positive squareroot $||v|| = \sqrt{\langle v, v \rangle}$.

Proposition 4.8. *Let* $I = [a, b] \subset \mathbb{R}$ *be an closed interval on* \mathbb{R} *. Let* $V = C^0(I)$ *denote all continuous* **R***-valued functions defined on I (domain is I). Then*

$$
\langle f, g \rangle = \int_a^b f(x)g(x) \ dx
$$

defines an inner product on V. The norm $||f|| = \sqrt{\langle f, g \rangle}$ is called the L_2 norm on $C^0(I)$.

Definition 4.9. For $z \in \mathbb{C}$, define the complex modulus to be $|z| = \sqrt{z\overline{z}}$. Note that when z is real (i.e. no imaginary part), then $|z|$ is the absolute value.

Theorem 4.10 (Cauchy-Schwartz inequality). *Let V be an inner product space with inner product* \langle , \rangle *and norm* $|| \cdot ||$ *. Then for any* $u, v \in V$ *, we have*

$$
|\langle u,v\rangle|\leqslant \|u\|\|v\|
$$

Moreover, the equality occurs only when u, v are linearly independent.

Remark 4.11. The Cauchy-Schwartz inequality tells us that the ratio $\frac{|\langle u,v \rangle|}{\|u\| \|v\|}$ is in between −1 and 1. Therefore we can define the 'abstract' angle between two vectors v, u to be

$$
\theta_{u,v} = \arccos \frac{|\langle u, v \rangle|}{\|u\| \|v\|}
$$

Definition 4.12. We say two vectors u, v are orthogonal if $\langle u, v \rangle = 0$.

Proposition 4.13. *If v*, *u orthogonal in V*, *then* $||v||^2 + ||u||^2 = ||v + u||^2$.

Remark 4.14. Definition [4.12](#page-8-2) generalizes the usual notion of orthogonality in \mathbb{R}^2 in a sense that when two vectors are orthogonal, then the angle between then is $\theta_{u,v} = \pi/2$.

Theorem 4.15. Let V be an inner product space, and $u, v \in V$. Then $||u + v|| \le ||u|| + ||v||$.

Definition 4.16*.* We can define norms more generally without requiring an inner product. A norm on *V* is a map $\|\cdot\|: V \to \mathbb{R}_{\geqslant 0}$ such that

• $||v|| \ge 0$ and $||v|| = 0$ only when $v = 0$.

$$
\bullet \|\lambda v\| = |\lambda| \|v\|
$$

⁶When $\mathbb{F} = \mathbb{R}$, the 'complex' conjugate of a real number is just itself.

• $||v + u|| \le ||v|| + ||u||$

Proposition 4.17. Let $K = (k_{ij})$ be the matrix whose entries are the inner product of the basis vectors, i.e. $k_{ij} = \langle e_i, e_j \rangle$. Then for $x = (x_1, \dots, x_n)$ and $y = (y_1, \dots, y_n)$ we have

$$
\langle x, y \rangle = \left\langle \sum_i x_i e_i, \sum_j y_j e_j \right\rangle = \sum_{i,j} x_i y_j \langle e_i, e_j \rangle = x^t K y
$$

Definition 4.18*.* A $n \times n$ matrix is positive-definite if $K^t = K$ and satisfy $x^t K x > 0$ for all $0 \neq x \in \mathbb{F}^n$. More generally, we say *K* is positive semi-definite if $K^t = K$ and $x^t K x \geq 0$ for all *x*.

Theorem 4.19. Every inner product is given by $\langle x, y \rangle = x^t K y$ where K is a positive-definite *matrix.*

Proposition 4.20. *Positive-definite matrices are non-singular (invertible).*

Definition 4.21. Given any $v_1, \dots, v_n \in V$, we define the Gram matrix to be $K = (k_{ij})$ where $k_{ij} = \langle v_i, v_j \rangle$. In particular, Let *A* be the matrix whose column vectors are v_1, \dots, v_n , then the Gram matrix is $K = A^tCA$, where C is the symmetric positive definite matrix defining the inner product.

Proposition 4.22. *A Gram matrix is always positive semi-definite. A Gram matrix is positive-definite if* and only *if* v_1, \cdots, v_n are *linearly independent.*

Proposition 4.23. Let A be an $m \times n$ matrix $(m \geq n)$, then TFAE:

- $K = A^t A$ *is positive-definite;*
- $Ker(A) = 0$;
- *• A has linearly independent columns;*
- $rank(A) = n$.

Theorem 4.24. Suppose $A \in M_{m \times n}$ and $K = A^T A$ is positive-definite. Then for any *symmetric positive definite matrix* $C \in M_{m \times m}$, the matrix $K' = A^tCA$ is also positive*definite.*

Proposition 4.25. For $K = A^tCA$, we have $\text{Ker}(K) = \text{Ker}(A)$, and hence $\text{rank}(K) =$ rank (A) .

4.2. Orthonormal Basis.

Definition 4.26. Let *V* be a real or complex inner product space. A basis v_1, \dots, v_n of *V* is called *orthogonal* if $\langle v_i, v_j \rangle = \delta_{i,j}$ for all *i*. An orthogonal basis of unit vectors is called *orthonormal*.

Proposition 4.27. Let $v_1, \dots, v_n \in V$ be pair-wise orthogonal, then they must be linearly *independent.*

Corollary 4.28. Let $v_1, \dots, v_n \in V$ be pair-wise orthogonal, then they form a basis for $span(v_1, \cdots, v_n)$.

Proposition 4.29. If e_1, \dots, e_n is an orthonormal basis, then for any $v \in V$, we have that

- $v = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_n \rangle e_n$
- \bullet $||v||^2 = |\langle v, e_1 \rangle|^2 + \cdots + |\langle v, e_n \rangle|^2$

Proposition 4.30. *If* e_1, \dots, e_n *is an orthonormal basis, then*

Theorem 4.31. Given any basis w_1, \dots, w_n of V, one can construct an orthogonal basis v_1, \cdots, v_n *using the Gram-Schmidt process:*

•
$$
v_1 = w_1
$$
.
\n• $v_2 = w_2 - \frac{\langle w_2, v_1 \rangle}{\|v_1\|^2} v_1$
\n• $v_3 = w_3 - \frac{\langle w_3, v_1 \rangle}{\|v_1\|^2} v_1 - \frac{\langle w_3, v_2 \rangle}{\|v_2\|^2} v_2$
\n• ...
\n• $v_k = w_k - \sum_{i=1}^{k-1} \frac{\langle w_k, v_i \rangle}{\|v_i\|^2} v_i$
\n• ...

Corollary 4.32. *Every finite dimensional inner-product space has an orthonormal basis.*

Theorem 4.33. *Suppose V is finite-dimensional and T is a linear functional on V . Then there is a unique vector* $v \in V$ *such that* $T(u) = \langle u, v \rangle$ *for every* $u \in V$.

Definition 4.34. A matrix *A* is orthogonal if $A^t A = I = AA^t$, or equivalently $A^t = A^{-1}$.

Proposition 4.35. *A matrix is orthogonal if and only if its column vectors form an orthonormal basis of* **F***ⁿ w.r.t the dot product.*

Definition 4.36. Let $W \subset V$ be a subspace. A vector $v \in V$ is said to be orthogonal to W is $\langle v, w \rangle = 0$ for all $w \in W$.

Definition 4.37. Two subspaces $W, U \subset V$ are said to be orthogonal if $\langle w, u \rangle = 0$ for all $w \in W, u \in U$.

Definition 4.38. The orthogonal complement of a subset $W \subset V$, denoted W^{\perp} , is the set of all vectors in *V* that are orthogonal to *W*.

$$
W^{\perp} = \{ v \in V | \langle v, w \rangle = 0 \text{ for all } w \in W \}
$$

Proposition 4.39. Let U^{\perp} be the orthogonal complement of $U \subset V$.

(1) U^{\perp} *is always a subspace of* V^{7} V^{7} V^{7} *.* $(2) \ \{0\}^{\perp} = V.$ $(3) V^{\perp} = \{0\}$ (4) $U^{\perp} \cap U \subseteq \{0\}.$ (5) *If* $W \subset U \subset V$, then $U^{\perp} \subset W^{\perp}$.

Proposition 4.40. *Let U be a finite dimensional subspace of V , then*

 $V = U^{\perp} \oplus U$

 $And \dim U^{\perp} = \dim V - \dim U$.

Proposition 4.41. $U = (U^{\perp})^{\perp}$

 $7E$ ven if *U* is not a subspace.

Definition 4.42. The orthogonal projection of *v* onto *W*, denoted $\text{Proj}_W(v)$ is the element $w \in W$ such that $v - w$ is orthogonal to *W*.

In other words, if we write *v* in the direct sum of $V = W^{\perp} \otimes W$ as $v = w' + w$ with $w \in W$ and $w' \in W^{\perp}$, then $\text{Proj}_W(v) = w'$.

Theorem 4.43. Let w_1, \dots, w_n be an orthogonal basis for a subspace $W \subset V$. Then the *orthogonal projection of v onto W is*

$$
Proj_W(v) = \langle v, u_1 \rangle u_1 + \dots + \langle v, u_n \rangle u_n
$$

Definition 4.44. Define the cokernel of a linear map $T \in Hom(V, W)$ to be the quotient space $\operatorname{coKer}(T) = W/\operatorname{Img}(T)$ and the coimage to be $\operatorname{colmg}(T) = V/\operatorname{Ker}(T)$.

Theorem 4.45. *We have* $\text{Ker}(T) = \text{colmg}(T)^{\perp}$ *and* $\text{Img}(T) = \text{colker}(T)^{\perp}$

Proposition 4.46. The equation $Ax = b$ has a solution if b is orthogonal to the cokernel of *A.*

5. Eigenvalues and Eigenvectors

Definition 5.1. Let *A* be an $n \times n$ complex or real matrix, then λ is an eigenvalue of *A* if there exists a non-zero vector *v*, called an eigenvector, such that $Av = \lambda v$.

Proposition 5.2. λ *is an eigenvalue of* A *if and only if* $A - \lambda I$ *is singular, i.e. there exist solutions to the equation* $(A - \lambda I)v = 0$ *.*

Definition 5.3. The characteristic polynomial of *A*, denoted $P_A(x)$, is defined to be

$$
P_A(x) = \det(A - xI)
$$

Remark 5.4*.* A matrix *A* and its transpose *A^t* have the same characteristic polynomial.

Proposition 5.5. *Over the complex numbers, the characteristic polynomial can be factored into*

 $P_A(x) = (-1)^n (x - \lambda_1)(x - \lambda_2) \cdots (x - \lambda_n)$

where $\lambda_1, \dots, \lambda_n$ *are the complex eigenvalues of A.*

Proposition 5.6. $\lambda_1 + \cdots + \lambda_n = \text{tr}(A)$ and $\lambda_1 \lambda_2 \cdots \lambda_n = \text{det}(A)$.

Definition 5.7. The algebraic multiplicity of an eigenvalue λ is its multiplicity as a root of *PA*(*x*).

Proposition 5.8. If v_1, \dots, v_k are eigenvectors corresponding to distinct eigenvalues $\lambda_1, \dots, \lambda_k$, *then* v_1, \dots, v_k *are linearly independent.*

Definition 5.9. Let λ be an eigenvalue of A, then the eigenspace corresponding to λ , denoted by V_{λ} is the space Ker($A - \lambda I$). The dimension of V_{λ} is called the geometric multiplicity of λ.

Definition 5.10*.* A matrix *A* is called complete if the algebraic multiplicity and geometric multiplicity of all eigenvalues equal.

Proposition 5.11. *A* $n \times n$ *matrix with n distinct eigenvalues is complete.*

Theorem 5.12. *Every complete matrix A can be diagonalized as follows*

$$
A = SDS^{-1}
$$

where $D = \text{diag}(\lambda_1, \dots, \lambda_n)$ and *S* is the matrix whose columns are linearly independent $eigenvectors v_1, \cdots, v_n$.

Remark 5.13*.* We will more often call complete matrices diagonalizable.

Theorem 5.14. *If A is a diagonalizable (complete) matrix, then all the k dimensional complex invariant subspace of A are spanned by linearly independent eigenvectors of A.*

Proposition 5.15. *Every real symmetric matrix is diagonalizable.*

Theorem 5.16 (spectral decomposition). Let A be a symmetric matrix, then $A = QDQ^t$ *where D is the diagonal matrix of eigenvalues of A, and Q is an orthogonal matrix whose columns are the orthonormal eigenvectors of A.*

Corollary 5.17. *A symmetric real matrix A is positive definite if and only if all of its eigenvalues are positive. (Note that when A is not necessary symmetric, being positive definite implies having positive eigenvalues, but the converse is not always true). A symmetric matrix A is positive semi-definite if and only if all of its eigenvalues are non-negative (possibly zero).*

Definition 5.18. Let λ be an eigenvalue of A. Then a Jordan chain of λ is a list of vectors w_1, \cdots, w_k such that

 $Aw_1 = \lambda w_1, \quad Aw_2 = \lambda w_2 + w_1, \cdots, Aw_k = \lambda w_k + w_{k-1}$

Definition 5.19. A non-zero vector *w* is called a generalized eigenvector of *A* if $(A - \lambda I)^{k}w = 0$ for some finite number *k*.

Definition 5.20. A Jordan basis of a square matrix *A* is a basis of \mathbb{C}^n (or \mathbb{R}^n) consisting of Jordan chains of *A*.

Theorem 5.21. *Every square matrix has a Jordan basis.*

Definition 5.22*.* A Jordan block is a matrix such that the diagonal entries are the same number, the super-diagonal entires are either 1 or 0, and the other entires are zero.

Definition 5.23*.* A Jordan canonical form of a square matrix *A*, is the block-diagonal matrix where each diagonal block is a Jordan block with eigenvalues on the diagonal. Denote *J^A* the Jordan canonical form of *A*.

Theorem 5.24. Any square matrix A can be written as $A = SJ_AS⁻¹$ where J_A is the Jordan *canonical form of A, and S is the matrix whose columns form the Jordan basis.*

Remark 5.25*.* The number of Jordan blocks in *J^A* equals to the number of Jordan chains in the Jordan basis of *A*.

Definition 5.26*.* The singular values of a general (non-square) matrix are the square roots of the eigenvalues of the Gram matrix $K = A^t A$.

Theorem 5.27. Every $m \times n$ matrix of rank r can be written as

 $A = P\Lambda Q^t$

where Λ is a $r \times r$ diagonal matrix with the singular values of A. The columns of A form an *orthogonal basis for* Img(*A*) *and the columns of Q form an basis for coImg*(*A*)*. In particular, the columns of* Q *are the normalized eigenvectors of the Gram matrix* $K = A^tA$ *corresponding to the non-zero eigenvalues.*

Remark 5.28*.* If *A* has no zero eigenvalue, then the SVD of *A* is 'the same' as the spectral decomposition of $K = A^t A$: $K = A^t A = (Q\Lambda P^t)(P\Lambda Q^t) = Q\Lambda^2 Q^t$.