Math 4242 Homework 2

(1) Let V be a vector space over \mathbb{F} , and $v_1, \dots, v_n \in V$. Show that $\operatorname{span}(v_1, \dots, v_n)$ is the smallest subspace of V that contains all of v_1, \dots, v_n .

Proof. Let W be any vector space containing v_1, \dots, v_n . We need to show that $\operatorname{span}(v_1, \dots, v_n) \subseteq W$, i.e. $v \in W$ for all $v \in \operatorname{span}(v_1, \dots, v_n)$. By definition of span an arbitrary element of $\operatorname{span}(v_1, \dots, v_n)$ looks like $v = a_1v_1 + \dots + a_nv_n$. Since W is a subspace, it's closed under linear combination, so $v \in W$, thus $\operatorname{span}(v_1, \dots, v_n) \subseteq W$.

(2) Let V be a vector space, and U_1, \cdot, U_m subspaces of V. Prove that

$$\operatorname{span}(U_1 \cup \cdots \cup U_m) = U_1 + \cdots + U_m$$

Proof. Since $U_1 + \cdots + U_m$ contains $U_1 \cup \cdots \cup U_m$, by previous problem, we know that $\operatorname{span}(U_1 \cup \cdots \cup U_m) \subseteq U_1 + \cdots + U_m$. To show they are equal, we still need that $U_1 + \cdots + U_m \subseteq \operatorname{span}(\bigcup_{i=1}^m U_i)$.

Take any $u \in U_1 + \cdots + U_m$, it can be written as $u_1 + \cdots + u_m$ where $u_i \in U_i$. This is automatically in $\operatorname{span}(U_1 \cup \cdots \cup U_m)$ because it's a linear combination of vectors in the union. Thus $U_1 + \cdots + U_m \subset U_1 \cup \cdots \cup U_m$, we are done.

(3) Prove that $\operatorname{span}(v_1, \dots, v_n) = \operatorname{span}(v_1) \oplus \dots \oplus \operatorname{span}(v_n)$ if and only if v_1, \dots, v_n are linearly independent.

Proof. (\Longrightarrow) Suppose span $(v_1,\cdots,v_n)=\operatorname{span}(v_1)\oplus\cdots\oplus\operatorname{span}(v_n)$. Then $0\in\operatorname{span}(v_1,\cdots,v_n)$ can be uniquely written as a sum $0=w_1+\cdots+w_n$ where $w_i\in\operatorname{span}(v_i)$ (i.e. $w_i=k_ia_i$ for some $k_i\in\mathbb{F}$.) That is to say $0=k_1v_1+\cdots k_nv_n$ for unique k_1,\cdots,k_n , thus by definition v_1,\cdots,v_n are linearly independent.

(\iff) If v_1, \dots, v_n linearly independent, then any $v \in \operatorname{span}(v_1, \dots, v_n)$ can be uniquely written as $v = a_1v_1 + \dots + a_nv_n$ for some $a_1, \dots, a_n \in \mathbb{F}$. Now since $a_iv_i \in \operatorname{span}(v_i)$, and this is the only way to write v as sum of vectors in $\operatorname{span}(v_i)$. Hence $\operatorname{span}(v_1) \oplus \dots \oplus \operatorname{span}(v_n)$ must be a direct sum.

- (4) OS 2.1.12
- (5) OS 2.1.13
- (6) OS 2.2.29
- (7) OS 2.3.3
- (8) OS 2.3.18
- (9) OS 2.4.22
- (10) OS 2.4.27
- (11) OS 3.1.9
- (12) OS 3.1.17

Optional (do not submit)

- 2.4.23
- 2.4.27
- 3.1.27