HW 4-6

$$
\diamondsuit 3.2.7. \text{ Using (3.20), } \|\mathbf{v} - \mathbf{w}\|^2 = \langle \mathbf{v} - \mathbf{w}, \mathbf{v} - \mathbf{w} \rangle = \|\mathbf{v}\|^2 - 2 \langle \mathbf{v}, \mathbf{w} \rangle + \|\mathbf{w}\|^2
$$

$$
= \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 - 2 \|\mathbf{v}\| \|\mathbf{w}\| \cos \theta.
$$

3.4.2. For instance,
$$
q(1,0) = 1
$$
, while $q(2,-1) = -1$.

 \Diamond 3.4.33. Let $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T K \mathbf{y}$ be the corresponding inner product. Then $k_{ij} = \langle \mathbf{e}_i, \mathbf{e}_j \rangle$, and hence K is the Gram matrix associated with the standard basis vectors e_1, \ldots, e_n .

3.6.37. (a) No, (b) no, \star (c) no, (d) yes, \star (e) yes.

 \Diamond 8.2.10. (a) If $A\mathbf{v} = \lambda \mathbf{v}$, then $A(c\mathbf{v}) = cA\mathbf{v} = c\lambda \mathbf{v} = \lambda(c\mathbf{v})$ and so cv satisfies the eigenvector equation for the eigenvalue λ . Moreover, since $\mathbf{v} \neq \mathbf{0}$, also $c\mathbf{v} \neq \mathbf{0}$ for $c \neq 0$, and so $c\mathbf{v}$ is a bona fide eigenvector. (b) If $A\mathbf{v} = \lambda \mathbf{v}$, $A\mathbf{w} = \lambda \mathbf{w}$, then

 $A(c\mathbf{v} + d\mathbf{w}) = cA\mathbf{v} + dA\mathbf{w} = c\lambda\mathbf{v} + d\lambda\mathbf{w} = \lambda(c\mathbf{v} + d\mathbf{w}).$

 \star (c) Suppose $A\mathbf{v} = \lambda \mathbf{v}$, $A\mathbf{w} = \mu \mathbf{w}$. Then **v** and **w** must be linearly independent as otherwise they would be scalar multiples of each other and hence have the same eigenvalue. Thus, $A(c\mathbf{v} + d\mathbf{w}) = cA\mathbf{v} + dA\mathbf{w} = c\lambda\mathbf{v} + d\mu\mathbf{w} = \nu(c\mathbf{v} + d\mathbf{w})$ if and only if $c\lambda = c\nu$ and $d\mu = d\nu$, which, when $\lambda \neq \mu$, is only possible when either $c = 0$ or $d = 0$.

8.2.12. True — by the same computation as in Exercise 8.2.10(a), cv is an eigenvector for the same (real) eigenvalue λ .

$$
\diamondsuit 8.2.32. (a) det(B - \lambda I) = det(S^{-1}AS - \lambda I) = det[S^{-1}(A - \lambda I)S]
$$

\n
$$
= det S^{-1} det(A - \lambda I) det S = det(A - \lambda I).
$$

\n(b) The eigenvalues are the roots of the common characteristic equation. (c) Not usually.
\nIf **w** is an eigenvector of *B*, then **v** = *S***w** is an eigenvector of *A* and conversely.
\n
$$
\star
$$
 (d) Both have 2 as a double eigenvalue. Suppose $\begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix} = S^{-1} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} S$, or, equivalently, $S \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} S$ for some $S = \begin{pmatrix} x & y \\ z & w \end{pmatrix}$. Then, equating entries, we must have $x - y = 2x$, $x + 3y = 0$, $z - w = 0$, $z + 3w = 2w$, which implies $x = y = z = w = 0$, and so $S = O$, which is not invertible.

8.2.2. (a) The eigenvalues are $e^{\pm i \theta} = \cos \theta \pm i \sin \theta$ with eigenvectors $\begin{pmatrix} 1 \\ \mp i \end{pmatrix}$. They are real only for $\theta = 0$ and π .

8.3.2. (a) Eigenvalue: 2; eigenvector: $\binom{2}{1}$; not complete. (c) Eigenvalues: $1 \pm 2i$; eigenvectors: $\begin{pmatrix} 1 \pm i \\ 2 \end{pmatrix}$; complete. (e) Eigenvalue 3 has eigenspace basis $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$; not complete. ★ (g) Eigenvalue 3 has eigenspace basis $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$; eigenvalue -2 has $\begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$; not complete. ★ (i) Eigenvalue 0 has eigenspace basis $\begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 2 \\ -1 \\ 0 \\ 1 \end{pmatrix}$; eigenvalue 2 has $\begin{pmatrix} -1 \\ 1 \\ -5 \\ 1 \end{pmatrix}$; not complete.

- \diamond 8.3.11. As in Exercise 8.2.32, if **v** is an eigenvector of A then S^{-1} **v** is an eigenvector of B. Moreover, if $\mathbf{v}_1, \ldots, \mathbf{v}_n$ form a basis, so do $S^{-1} \mathbf{v}_1, \ldots, S^{-1} \mathbf{v}_n$; see Exercise 2.4.21 for details.
- \diamond 8.3.21. Let S_1 be the eigenvector matrix for A and S_2 the eigenvector matrix for B. By the hypothesis $S_1^{-1}AS_1 = \Lambda = S_2^{-1}BS_2$, so $B = S_2S_1^{-1}AS_1S_2^{-1} = S^{-1}AS$ where $S = S_1S_2^{-1}$.
- 8.4.3. (a) Real: $\{0\}$, \mathbb{R}^2 . Complex: $\{0\}$, the two (complex) lines spanned by each of the complex eigenvectors $(i,1)^T$, $(-i,1)^T$, \mathbb{C}^2 .

 \star (c) Real: {0}, the line spanned by the real eigenvector $(1,0,-1)^T$, the plane spanned by the real and imaginary parts of the complex conjugate eigenvectors $\left(\frac{1}{5},1,-1\right)^T$, $(1,-1,0)^T$, \mathbb{R}^3 . Complex: $\{0\}$, the three (complex) lines spanned by each of the complex eigenvectors $(1,0,-1)^T$, $(\frac{1}{5}+\frac{3}{5}i,1,-1)^T$, $(\frac{1}{5}-\frac{3}{5}i,1,-1)^T$, the three (complex) planes spanned pairs of complex eigenvectors, \mathbb{C}^3 .

$$
8.3.16.\ (a) \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} i & -i & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} i & 0 & 0 \\ 0 & -i & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -\frac{i}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} \end{pmatrix},
$$

\n
$$
\star \ (b) \begin{pmatrix} \frac{5}{13} & 0 & \frac{12}{13} \\ 0 & 1 & 0 \\ -\frac{12}{13} & 0 & \frac{5}{13} \end{pmatrix} = \begin{pmatrix} -i & i & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{5+12i}{13} & 0 & 0 \\ 0 & \frac{5-12i}{13} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{i}{2} & 0 & \frac{1}{2} \\ -\frac{i}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{pmatrix}.
$$

 \heartsuit 8.5.6. (a) If $A\mathbf{v} = \lambda \mathbf{v}$ and $\mathbf{v} \neq \mathbf{0}$ is real, then

$$
\lambda \|\mathbf{v}\|^2 = (A\mathbf{v}) \cdot \mathbf{v} = (A\mathbf{v})^T \mathbf{v} = \mathbf{v}^T A^T \mathbf{v} = -\mathbf{v}^T A \mathbf{v} = -\mathbf{v} \cdot (A\mathbf{v}) = -\lambda \|\mathbf{v}\|^2,
$$

and hence $\lambda = 0$.

(b) Using the Hermitian dot product,

$$
\lambda ||\mathbf{v}||^2 = (A\mathbf{v}) \cdot \overline{\mathbf{v}} = \mathbf{v}^T A^T \overline{\mathbf{v}} = -\mathbf{v}^T A \overline{\mathbf{v}} = -\mathbf{v} \cdot (A\mathbf{v}) = -\overline{\lambda} ||\mathbf{v}||^2,
$$

and hence $\lambda = -\overline{\lambda}$, so λ is purely imaginary.

(c) Since det $A = 0$, cf. Exercise 1.9.8, at least one of the eigenvalues of A must be 0.

(d) The characteristic polynomial of $A = \begin{pmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{pmatrix}$ is $-\lambda^3 + \lambda(a^2 + b^2 + c^2)$ and

hence the eigenvalues are $0, \pm i\sqrt{a^2 + b^2 + c^2}$, and so are all zero if and only if $A = O$. (e) The eigenvalues are: (i) $\pm 2i$, (iii) $0, \pm \sqrt{3}i$.

 \heartsuit 8.5.32. (i) This follows immediately from the spectral factorization. The rows of ΛQ^T are $\lambda_1 \mathbf{u}_1^T, \ldots, \lambda_n \mathbf{u}_n^T$, and formula (8.37) follows from the alternative version of matrix multiplication given in Exercise 1.2.34.

$$
(ii) (a) \begin{pmatrix} -3 & 4 \\ 4 & 3 \end{pmatrix} = 5 \begin{pmatrix} \frac{1}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{4}{5} \end{pmatrix} - 5 \begin{pmatrix} \frac{4}{5} & -\frac{2}{5} \\ -\frac{2}{5} & \frac{1}{5} \end{pmatrix}.
$$

$$
\star (c) \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix} = 3 \begin{pmatrix} \frac{1}{6} & \frac{1}{3} & \frac{1}{6} \\ \frac{1}{3} & \frac{2}{3} & \frac{1}{3} \\ \frac{1}{6} & \frac{1}{3} & \frac{1}{6} \end{pmatrix} + \begin{pmatrix} \frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & 0 & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix}
$$

8.6.6. (b) Two 1×1 Jordan blocks; eigenvalues -3 , 6; eigenvectors e_1 , e_2 .

 \star (c) One 1 x 1 and one 2 x 2 Jordan blocks; eigenvalue 1; eigenvectors $\mathbf{e}_1, \mathbf{e}_2$.

(d) One 3×3 Jordan block; eigenvalue 0; eigenvector e_1 .

(e) One 1×1 , 2×2 , and 1×1 Jordan blocks; eigenvalues 4, 3, 2; eigenvectors e_1 , e_2 , e_4 .

8.7.2. (a)
$$
\begin{pmatrix} 1 & 1 \ 0 & 2 \end{pmatrix} = \begin{pmatrix} \frac{-1+\sqrt{5}}{\sqrt{10-2\sqrt{5}}} & \frac{-1-\sqrt{5}}{\sqrt{10+2\sqrt{5}}} \\ \frac{2}{\sqrt{10-2\sqrt{5}}} & \frac{2}{\sqrt{10+2\sqrt{5}}} \end{pmatrix} \begin{pmatrix} \sqrt{3+\sqrt{5}} & 0 \\ 0 & \sqrt{3-\sqrt{5}} \end{pmatrix} \begin{pmatrix} \frac{-2+\sqrt{5}}{\sqrt{10-4\sqrt{5}}} & \frac{1}{\sqrt{10-4\sqrt{5}}} \\ \frac{-2-\sqrt{5}}{\sqrt{10+4\sqrt{5}}} & \frac{1}{\sqrt{10+4\sqrt{5}}} \end{pmatrix},
$$

\n(b) $\begin{pmatrix} 0 & 1 \ -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix},$
\n(c) $\begin{pmatrix} 1 & -2 \ -3 & 6 \end{pmatrix} = \begin{pmatrix} -\frac{1}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} \end{pmatrix} (5\sqrt{2}) \begin{pmatrix} -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix},$
\n(e) $\begin{pmatrix} 2 & 1 & 0 & -1 \ 0 & -1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} -\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix} \begin{pmatrix} \sqrt{7} & 0 \\ 0 & \sqrt{2} \end{pmatrix} \begin{pmatrix} -\frac{4}{\sqrt{35}} & -\frac{3}{\sqrt{35}} & \frac{1}{\sqrt{35}} & \frac{3}{\sqrt{35}} \\ \frac{2}{\sqrt{10}} & -\frac{1}{\sqrt{10}} & \frac{2}{\sqrt{10}} & \frac{1}{\sqrt{10}} \end{pmatrix},$